اثر LPS بر فعالیت NO بلافاصله بعد از کشت سلولی (72 و 48 ساعت بعد از تیمار)       121

نمودار 4-8. بررسی میزان اثر LPS بر فعالیت NO با فاصله یک روز بعد از کشت سلولی (48 و 24 ساعت بعد از تیمار) … 122

نمودار 4-9. بررسی میزان اثر LPS بر فعالیت H2O2 بلافاصله بعد از کشت سلولی (72 و 48 ساعت بعد از تیمار)     123

نمودار 4-10. بررسی میزان اثر LPS بر فعالیت H2O2 با فاصله یک روز بعد از کشت سلولی (48 و 24 ساعت بعد از تیمار) . 124

نمودار 4-11. بررسی میزان اثر LPS بر فعالیت COX-2 بلافاصله بعد از کشت سلولی (72 و 48 ساعت بعد از تیمار) .. 125

نمودار 4-12. بررسی میزان اثر LPS بر فعالیت COX-2 با فاصله یک روز بعد از کشت سلولی (48 و 24 ساعت بعد از تیمار) ……. 126

نمودار 4-13. بررسی میزان اثر LPS بر فعالیت NO پس از 1، 2، 3 و 7 روز بعد از اجرای الگوی زخم       127

نمودار 4-14. بررسی میزان اثر LPS بر فعالیت H2O2 پس از 1، 2، 3 و 7 روز بعد از اجرای الگوی زخم     128

نمودار 4-15. بررسی میزان اثر LPS بر فعالیت COX-2 پس از 1، 2، 3 و 7 روز بعد از اجرای الگوی زخم  129

فهرست اشكال

شکل 2-1. ترکیب غشای باکتری‌های گرم منفی غشای سیتوپلاسمی‌یا غشای داخلی، سلول باکتری را احاطه می‌کند. 14

شکل 2-2. ساختار LPS از نوع صاف نشان دهنده‌ی انشعاب اختصاصی O، مرکز داخلی و خارجی، لیپید A می‌باشد 15

شکل 2-3. ساختار LPS از نوع زبر………………………………………………………………………………………………………. 16

شکل 2-4. ساختار لیپید A در سالمونلا تیفی موریوم و اشریشیا کلی…………………………………………….. 19

شکل 2-5. سالمونلا انتریتیدیس…………………………………………………………………………………………………………… 28

شکل 2-6. اجزای متقاطع التهاب…………………………………………………………………………………………………………. 31

شکل 2-7. متابولیسم اسید آراشیدونیک…………………………………………………………………………………………….. 33

شکل 2-8. مسیر انتقال سیگنال توسط رسپتور‌های شبه تول…………………………………………………………… 34

شکل 2-9. مسیر بیوسنتز پروستانوئید‌ها……………………………………………………………………………………………… 36

شکل 2-10. تأثیر COX-2 بر آنژیوژنز………………………………………………………………………………………………… 40

شکل 2-11. اثر LPS بر تولید PGE2………………………………………………………………………………………………….. 41

شکل 2-12. نمایی از مکانیسم اثر LPS بر تحریک تولید COX-2………………………………………………….. 42

شکل 2-13. منابع تولید کننده ROS…………………………………………………………………………………………………. 47

شکل 2-14. سیستم اکسیداسیون- احیا و تکثیر سلولی………………………………………………………………….. 48

شکل 2-15. نقش ROS در چرخه‌ی سلولی………………………………………………………………………………………. 50

شکل 2-16. مراحل سنتز نیتریک اکسید…………………………………………………………………………………………… 52

شکل 2-17. رابطه‌ی بین NO، COX-2 و ROS با LPS…………………………………………………………………. 57

شکل  2-18. فیبروبلاست…………………………………………………………………………………………………………………….. 58

شكل 2-19. نمایی شماتیک از اندامک‌های داخلی فیبروبلاست……………………………………………………….. 60

شکل 2-20. مراحل ترمیم زخم پوستی……………………………………………………………………………………………… 63

شکل 2-21. نگاهی کلی به فاز التهابی ترمیم زخم……………………………………………………………………………. 65

شکل 2-22. روز سوم زخم (فاز التهابی)……………………………………………………………………………………………… 66

شکل 2-23. روز پنجم زخم (مرحله‌ی ری اپیتلیالیزاسیون و رگ‌سازی)…………………………………………. 66

شکل 2-24. کنترل مستقیم و غیر مستقیم ری اپیتلیزاسیون، آنژیوژنز و فعالیت فیبروبلاست‌ها توسط ماکروفاژها      72

شکل 2-25. اثر سلول‌های مختلف در ترمیم زخم……………………………………………………………………………… 73

شکل 2-26. مدل فرضی از نقش گونه‌های واکنشگر اکسیژن در مکانیسم سیگنال‌دهی فاکتور رشد اپیدرمی در سلول‌های اپیتلیال…………………. 80

شکل 2-27. مدلی فرضی برای تنظیم ساخت کلاژن………………………………………………………………………… 84

شکل 3-1. احیای کلرومتریک XTT با آنزیم‌های سلولی……………………………………………………………………. 94

شکل 3-2. نگهداری از حیوانات آزمایشگاهی……………………………………………………………………………………. 101

شکل 3-3. نحوه قرارگیری موش‌های آزمایشگاهی در قفس‌های مخصوص…………………………………….. 105

شکل 3-4. روز صفر پس از اجرای الگوی زخم………………………………………………………………………………… 107

شکل 3-5. روزهای مختلف پس از اجرای الگوی زخم…………………………………………………………………….. 108

شکل 3-6. نحوه گرفتن بیوپسی از محل زخم و تقسیم‌بندی نمونه‌ها به منظور انتقال به آزمایشگاه‌های بیوشیمی و پاتولوژی…………….. 109

شکل 4-1. عکس‌های حاصل از نمونه‌های پاتولوژیک………………………………………………………………………. 134

 

خلاصه فارسی

اندوتوکسین‌ها از عمده‌ترین فاکتور‌های ویرولانس باکتری‌های گرم منفی هستند که به دلیل اثرات ایمونولوژیکی، پاتو فیزیولوژیکی و فارماکولوژیکی بر سلول‌های یوکاریوتی، مورد توجه قرار گرفته‌اند. ترمیم زخم ممکن است به دلیل نقص در مولکول‌های میانجی متوقف شود. لیپو پلی ساکارید (LPS) یکی از اصلی‌ترین محرک‌های تولید میانجی‌های التهابی به شمار می‌آید. هدف اصلی این تحقیق، بررسی اثر تجویز موضعی LPS سالمونلا انتریکا بر زخم تجربی ایجاد شده در پوست موش Balb/c و همچنین اثر آن بر تکثیر سلول‌های فیبروبلاست پوست می‌باشد. نمونه‌گیری از بافت‌های پوستی مربوط به گروه‌های شاهد و تیمار طی روز‌های 1، 2، 3 و 7 بعد از ایجاد زخم، به منظور بررسی‌های بیوشیمیایی و پاتولوژیکی انجام شد. میزان حیات سلولی با استفاده از روش XTT برای سلول‌های فیبروبلاست صورت گرفت. زخم‌های تیمار شده با LPS (100μg) نسبت به گروه شاهد، افزایش ارتشاح سلول‌های التهابی به محل زخم و افزایشی جزئی در میزان ضخامت لایه‌ی اپیتلیوم نشان دادند. سنجش سیکلو اکسیژناز-2 (COX-2)، هیدروژن پراکسید (H2O2) و نیتریک اکسید (NO) به منظور اثر احتمالی آنها در ترمیم زخم مورد ارزیابی قرار گرفت. در سنجش‌های بیوشیمیایی میزان NO، COX-2، H2O2 افزایش یافت (P˂0.001). بر اساس آزمون ANOVA، در بررسی میزان حیات سلول‌های فیبروبلاست تفاوت معنادار بین گروه‌های شاهد و تیمار مشاهده شد که البته این تفاوت وابسته به دوز مصرفی LPS و مدت زمان انکوباسیون بود. نتایج نشان می‌دهند که LPS با تحریک تولید میانجی‌های التهابی، توانایی افزایش مرحله‌ی التهابی ترمیم زخم را دارد. مطالعات گسترده‌تر با طراحی دوز‌های مختلف از LPS استرین‌های باکتریایی مختلف، فهم بهتری از